Sea-Level Change Planning and Adaptation: USACE and DoD Perspective

Workshop on Planning and Engineering Climate Resilient Infrastructure at NASA Coastal Facilities

15 May 2013

Kevin Knuuti, P.E, D.CE.

US Army Cold Regions Research and Engineering Laboratory
Engineer Research and Development Center
Hanover, NH

Workshop Questions

- What are the risks?
- Master planning: best practices and lessons learned
- Common adaptation approaches
- How to prioritize activities
- Design and construction: best practices and lessons learned
 - Regulatory codes and design standards
 - Sustainable design practices

Workshop Questions (continued)

- O&M: best practices and lessons learned
- Being better prepared: before, during, and after
- Maintaining momentum
- Measuring success

My Focus for Today

- What are the risks?
- Approaches
- Prioritization
- Design and construction
 - Regulatory authority
 - Design standards
 - Sustainable design considerations
- **O&M**
- Maintaining momentum

USACE and DoD current interests and activities

- USACE policy
- USACE interest & actions
- DoD interest and actions

What are the Risks? future sea-level change

IPCC: TAR, AR4, AR5 (future projections?)

IPCC, 2001

Recent Literature

	The State of the S				
		ture Change elative to 1980-1999) ^a	Sea Level Rise (m at 2090-2099 relative to 1980-1999) Model-based range excluding future rapid dynamical changes in ice flow		
Case	Best estimate	<i>Likely</i> range			
Constant Year 2000 concentrations ^b	0.6	0.3 – 0.9			
B1 scenario	1.8	1.1 – 2.9	0.18 – 0.38		
A1T scenario	2.4	1.4 - 3.8	0.20 - 0.45		
B2 scenario	2.4	1.4 - 3.8	0.20 - 0.43		
A1B scenario	2.8	1.7 – 4.4	0.21 - 0.48		
A2 scenario	3.4	2.0 - 5.4	0.23 – 0.51		
A1FI scenario	4.0	2.4 - 6.4	0.26 - 0.59		

Table notes:

IPCC, 2007

^a These estimates are assessed from a hierarchy of models that encompass a simple climate model, several Earth Models of Intermediate Complexity (EMICs), and a large number of Atmosphere-Ocean Global Circulaion Models (AOGCMs).

^b Year 2000 constant composition is derived from AOGCMs only

What are the Risks? Future Projections of (Global) Sea-Level Change

- Intergovernmental Panel on Climate Change (IPCC)
- National Research Council
- Various individuals
- U.S. Global Change Research Program (USGCRP) - National Climate Assessment (NCA)

What are the Risks? future sea-level change

We cannot predict the future so what should we do regarding sealevel change?

What are the Risks? Future Projections: Multi-Scenario Approach - Plan for Uncertainty

What are the Risks? Future Projections: MSL vs Other Considerations

LMSL Trend duration

0.0014 m/yr or 0.46 ft/century

Post-eq

0.0021 m/yr or 0.69 ft/century

MHW Trend

0.0024 m/yr or 0.79 ft/century

MTR Trend increasing

What are the Risks? MSL vs Other Considerations

Approaches

- Screening-level assessment
- Rigorous assessment

Prioritization

- Experience from dam safety
- Based or screening-level assessment
- Requires consideration of relative importance of certain aspects of the technical analysis

Prioritization

Screening-Level Assessment: SLR Effects on Storm Surge

(Historical RSLR Rate, 4.6 mm/yr)

Location/	Return	Baseline (m NAVD88)	Future MSLR (m)				
Condition	Period		0.5 > 2046	1.0 > 2069	1.5 > 2087	2.0 > 2100	
NBC Exposed Shoreline Total Water Level	Week	2.2	2.7	3.2	3.7	4.2	
	Month	2.5	3.0	3.5	4.0	4.5	
	Year	3.0	3.5	4.0	4.5	5.0	
	Decade	3.5	4.0	4.5	5.0	5.5	
	Century	3.7	4.2	4.7	5.2	5.7	

Long Term Scenario	Short Term Scenario	Receptor	Traning and testing lands	Buildings	Civil infrastructure	Waterfront structures	Coastal structures	Protective Buffers
Mean SLR	Return Period	Metric	Days/Area	Cost	Cost	Days/Cost	Cost	Length
0.5 m	1 day 1 month 1 year 10 year 100 year							
1.0 m	1 day 1 month 1 year 10 year 100 year	Estimated Risk	$Risk_s = probability_s \sum vu ln erabilities$					
1.5 m	1 day 1 month 1 year 10 year 100 year			- proc	outity _s	vu in	eraonin	
2.0 m	1 day 1 month 1 year 10 year 100 year							

Approaches

- Do nothing
- Move/retreat
- Flood prevention
- In-place adaptation
- Long-term planning/master planning

Technical Bulletin 7-93

Wet Floodproofing Requirements for Structures Located in Special Flood Hazard Areas in accordance with the National Flood Insurance Program

FIA-TB-7 12/93

Technical Bulletin 3-93

Non-Residential Floodproofing — Requirements and Certification

for Buildings Located in Special Flood Hazard Areas in accordance with the National Flood Insurance Program

FEDERAL EMERGENCY MANAGEMENT AGENCY FEDERAL INSURANCE ADMINISTRATION FIA-TB-3 4/93

"[Design] scenarios considered are situation-dependent and based on tolerable risk."

Q: What does that mean and how do you apply it?

A: Three examples:

- beaches
- levees
- very large structures

Maintaining Momentum

- Stand-alone policy
- National working group (get the right people)
- Part of formal review process
- Education
 - Internal
 - Partners
 - External
- Perseverance

"Education is the path from cocky ignorance to miserable uncertainty"

Mark Twain

Multi-Scenario Approach USACE SLR Scenarios

What are the Risks? Future Projections: Where are we today?

Corps of Engineers Policy step-by-step approach

EC 1165-2-XXX 15 June 2009

Figure C-1. Graphical illustration of process to account for changes in mean sea level.

Other Considerations

Coastal System – Infrastructure Categories

- Training and Testing Lands Encompass the coastal land areas that support training and testing missions.
- Buildings Includes a range of buildings that support operations and missions of the installation.
- Waterfront Structures Includes a range of structures that support waterfront operations and missions of the installation.
- Coastal Structures Includes a range of coastal structures whose primary purpose is to protect the shoreline and thus sustain operations and missions of the installation.
- Civil Infrastructure Describes a broad category of built infrastructure that is critical to the day-to-day operations and mission of the installation.
- Protective Buffers Classified as non-engineered coastal areas that provide a natural means of protection for coastal installations from changes in sea level.